NASA Airborne Radar Help Measure Magma of Hawaii Volcano

From 41,000 feet (12,500 meters) above Kilauea’s smoldering craters, an airborne radar developed by NASA’s Jet Propulsion Laboratory will help measure the magma inside of the volcano, which just began its 30th year of continuous eruption from one of its vents. This mission has returned to Hawaii for the third time to see how the volcano’s surface is changing, which holds clues about what’s happening inside the world’s most active volcano. Surface deformation is what the Uninhabited Aerial Vehicle Synthetic Aperture Radar, or UAVSAR, is measuring. Mounted in a pod under NASA’s G-III research aircraft from Dryden Flight Research Center in Edwards, Calif., the radar returned to Hawaii’s Big Island on January 7 for a one-week. UAVSAR uses a technique called interferometry that sends pulses of microwave energy from the sensor on the aircraft to the ground to detect and measure very subtle deformations in Earth‘s surface. When volcanoes inflate or erupt, magma is moving in or out of the volcano. By measuring how the surface moves during these deformations, scientists can get a good idea how much magma is inside Kilauea.